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Background

Push for higher fuel economy: CAFE, global warming
Push for lower emissions: EPA Tier 2, CARB LEV-II

Some efforts help both: reduced mass, aero drag, rolling
resistance, and auxiliary loads

For conventional vehicles, tradeoffs include:
e Cl vs Sl engine (better MPG, worse NOx & PM)
* Engine “tuning” (timing, A/F ratio, etc.)

* Use of EGR (better NOX, slightly worse MPG)

HEVs provide additional optimization potential




Approach for HEV Tradeoff Study

Select vehicle, drive cycle, and performance objectives
Model vehicle behavior (fuel use and emissions)
Predict the effect of different design and control options
Perform multi-dimensional optimization on key options

Check applicability to other vehicle and cycle types




Baseline Vehicle Configuration

Vehicle: “PNGV-type” mid-sized 4-door (A;= 2 m?)
* Reduced “glider mass” (500 vs ~900 kg), aero drag (0.20 vs ~0.33),
rolling resistance (0.007 vs ~0.009), & auxiliary loads (700 vs ~1000 W)

Required vehicle performance: Gradability: 6.5%,
acceleration: 0-60 mph in 12s, 40-60 mph in 5.3 s

Fuel economy evaluated on US EPA city/hwy cycles,
emissions evaluated on US EPA city cycle (FTP-75)

Conventional, series (power follower), & parallel with:
 Base engine: 1.91 VW TDI
* Advanced high-power lead-acid batteries (in series and parallel)

* All components scaled (mass and peak power) to deliver equal
performance




ADVISOR 2.1

Background on ADVISOR

. Help | Exdt

® ADVISOR = ADvanced Vehlcle SimulatOR

— simulates conventional, electric, or hybrid vehicles (series,
parallel, or fuel cell)

@ Created in ‘94 to support DOE HEV Program at NREL
e Freely distributed via: www.ctts.nrel.gov/analysis

— Current version (2.1.1) released on web 4/13/99
— Users provide component data and validation




ADVISOR Being Used Globally
May 1999: ~600 users
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Three Main ADVISOR Screens

Vehicle Input

i Nl Hep

Simulation Setup




ADVISOR Test Procedures Available
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Efficiency map for CIDI engine

Engine Map - Fuel Efficiency
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For this CIDI engine, different
regions provide different benefits
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Fuel Converter Operation - Volkswagen 1.9L Turbo Diesel

Engine
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Parallel hybridization
helps move operating
points into higher
efficiency regions
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Degree of Hybridization: Definition

Minimum Fuel Converter Size
Required for Acceleration
Constraints (fc_max_pwr)

Minimum Fuel Converte Size
Required for Grade
Constraints (fc_min_pwr)
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Large Engine Parallel Small Engine
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Parallel HEV Control Strategy

For SOC >c¢s lo soc

Off Torque Enwelope




Parallel HEV Control Strategy

For SOC = ¢s lo soc
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Trade-Offs Between Fuel Economy and Emissions
Become Visible in Parametric Studies

Fuel Economy




Full Optimization Allows Efficiency/Emissions
Tradeoffs to be Performed Mathematically

@ Goal: Balanced fuel economy and emissions
@ Define an objective function that:

— Includes emissions and fuel economy

— Normalizes values to targets

— Includes “tuning” parameters

For example, minimize :

Age 80mpg §+ Bge HC 2, CgeCO 2, DgeNOX 2
&fuel economy 5 £0.12549 é1.7g5 ¢

f =




Control Strategy Optimization: 0.5 Parallel HEV
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Moving from Baseline to Optimal Fuel Economy:
Minimum-Torque and Off-Torque Fractions

(FE shown for FTP only, not FTP/hwy, Parametric Sweeps Performed Starting at Baseline)
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Moving from Baseline to Optimal Emissions:
Minimum-Torque and Off-Torque Fractions

(Parametric Sweeps Performed Starting at Case 2)
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Effect of Charge-Torque and Off-Torque on Emissions
Trade-offs: Better NOx, PM, But Worse CO, HC

(Parametric Sweeps Performed Starting at Baseline)




Control Strategy Development

Goal: minimize energy usage and emissions
User can weight importance of mpg, HC, CO, NOx, & PM

For each operation point (a given speed), look at range of possible
engine-motor torque combinations

Performance is weighted sum of instantaneous mpg & g/mi

Transient thermal effects (engine & catalyst) are included

NOX for wq= 250 rad/s (2387 rpm)
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Control Strategy: Performance Function

Normalized Weighting Weighting-
Emissions (user) (desired HC:0.125g/mi

Performance Treq =100Nm, w req =2387rpm CO 17g/m| NOXOZg/rT“
—  HC O0x
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motor) (user) (80mpg desired)




“Dynamic”Control Strategy: 0.5 Parallel HEV
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NREL 16-day “Real-Wo

Table 5 - Summary of CARB Unified Correction Cycles

Mean
Speed
(mph)

Max
Speed
(mph)

Max
Accel
(mph/s)

PKE*
(ft/s)

Dis-
tance
(miles)

Stops/
Mile

Idle
(%)

Accel
(%)

UCC5

UCC10
UCC15
uUCC20
UCC25
UCC30
UCC35
UCC40
UCC45
UCC50
UCC55
UCC60
UCC65
UCC70
UCC75

2.4
8.0
13.3
17.7
22.9
26.8
31.9
35.6
44.6
43.2
47.4
53.8
57.3
59.1
67.65

12.9
28.0
36.5
43.8
49.8
59.1
68.7
72.3
714
71.6
711
70.7
814
83.0
88.7

2.8
4.1
4.6
5.7
5.8
54
5.6

1.86
1.74
2.20
1.92
1.72
141
1.27
111
1.06
0.73
0.66
0.74
0.58
0.71

0.1
0.8
15
4.1
54
7.3
11.9
13.1
16.1
26.1
30.3
41.7
61.2
59.7

312
8.5
3.84
3.16
2.02
1.36
1.00
0.68
0.43
0.31
0.23
0.19
0.13
0.10
0.07

60.8
445
27.7
16.1
13.2

18.0
27.2
40.5
42.3
43.8
45.5
45.7
47.1
45.7
47.5
44.8
43.4
44.9
46.5
49.9

*PKE = Positive kinetic energy
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Effect of Drive Cycle on Parallel Hybrid
0.5 Hyb. Parallel
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Conclusions

Hybrid vehicles provide additional vehicle and
control optimization opportunities

~or the vehicle studied, increasing the “degree” of
nybridization led to higher MPG (up to 1.5X) and

ower PM, but also higher NOx (up to 2X)

Parametric sweeps of control strategy parameters
orovide insight about trade-offs

Numerical optimization becomes critical when
number of design variables exceeds 2 or 3




Conclusions (cont’d)

* Control strategies can be designed to balance fuel
economy and emissions
e Casel: 7% - MPG, 7%~ NOx
* Case 3. 3% - MPG, 36% — NOx
* Case 4. 6% - MPG, 13% ~ NOx

* The drive cycle affects the relative merit of design
selections: parallel HEVs show higher MPG but
also higher NOx (w.r.t. conventional) on slower
cycles




